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As was established in [1-4], isoentropic supercompression of a material is realized 
with growth in pressure on its boundary in a regime with aggravation (unlimited increase 
over a finite time tf) 

'p ( o , t ) =  Po ( q  - t) ~ ,  ~ = - 2? (N + i)/(? + l + N (? - -  t)), ( 1 ) 

where p is pressure, ~ is the adiabatic index, and N = 0, 1, 2 is the symmetry index. In 
the study of limiting regimes with aggravation in gas dynamics problems [5-10], including 
various physical problems [Ii], it has been shown that "slow" regimes with aggravation [to 
which Eq. (i) also applies] lead to localization of flows in a finite region, shock-free 
compression, and formation of gas dynamic structures [5-12], while in "rapid" regimes local- 
ization is absent and compression is accompanied by development of a shock wave, which in- 
tensifies without limit as t + tf [13]. Study of shock-free compression and the localiza- 
tion effect for multidimensional gas dynamic flows is of undoubtable interest, and is the 
goal of the present study. 

We will consider multidimensional flows of viscous compressible media with a homogeneous 
spatial density [p = p1(t), N = i/p = hi(t), where N is the specific volume]. It has been 
shown that the Navier-Stokes equations then reduce to linear elliptical Poisson equations. 
Using the example of the one-dimensional case the characteristics of all media allowing flows 
with homogeneous spatial density have been analyzed. On the basis of the equations obtained 
solutions have been constructed which describe the effect of localization of multidimensional 
gas dynamic flows. 

Individual questions related to study of flows with homogeneous density for the Euler 
equations and in the one-dimensional case were treated in greater detail in [14, 15]. 

The continuity equation 

Op/Ot + div (pv) = 0 (2)  

(where v is the velocity) for continuous flows with homogeneous density [p = 01(t) = qi1(t)] 
reduces to the form 

d ivv  I @1 
~11 dr" (3) 

We write the general solution of Eq. (3): 

v = v 0 + rot  A (r, t), (Vo)~ = a~ (t) rn, 
I dnl (4) 

i s  Here N + 1 is the dimensionality of the space; {r I ..... rN} are Euler coordinates; A(r, t) 
an arbitrary vector function. 

Assuming that the dynamic viscosity of the gas depends only on its density ~ = ~(PI(O), 
we make use of the Navier-Stokes equations 

0v v2 t g r a d p §  U (5 )  0-T+ [rotv,  v] + grad 2 p 

[where  ~ = 5 ( p )  i s  t h e  s econd  v i s c o s i t y  c o e f f i c i e n t ,  a r b i t r a r y  in  t h e  g e n e r a l  c a s e ,  and U i s  
t h e  p o t e n t i a l  o f  e x t e r n a l  f o r c e s ] .  

I n  v iew o f  t h e  a s s u m p t i o n  O = p t ( t )  and t h e  s a t i s f a c t i o n  o f  Eq. (3 )  g r ad  d i v  v ~ 0 and 
p- g r a d p  = I g rad  ( p 9 - ) ,  c o n s e q u e n t l y  Eq. (5 )  can  be r e d u c e d  t o  t h e  form 
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Ov " P v ~ 
0-7" + [rot v, v] - -  V (P) Av = - -  grad ~ ,  1~ = ~ + T + U. ( 6 )  

The condition of solvability of rot grad~ - 0 yields an equation for the velocity 

t r o t  v + rot [rot v, v] - -  V (P) rot Av = 0, ( 7 )  

w h i c h  a c c o r d i n g  t o  Eq. ( 4 )  i n  f a c t  d e f i n e s  t h e  v e c t o r  f u n c t i o n  A(r, t). The p o t e n t i a l  T(r ,  t), 
o b t a i n e d  t o  t h e  a c c u r a c y  o f  an  i n s i g n i f i c a n t  s c a l a r  f u n c t i o n  o f  t i m e  F l ( t ) ,  c a n  be f o u n d  f r o m  
t h e  l i n e a r  e l l i p t i c a l  P o i s s o n  e q u a t i o n  

d ( 1  d~l] __ div [rot v, v], ( 8 )  
A~= dt \ q T / T /  

where the specific volume nl and velocity v appear on the right side as parameters, which 
is also valid for multidimensional flows of ideal compressible media (described by the Euler 
equations), since consideration of viscosity forces does not affect its form. 

The analysis simplifies significantly in the case of potential flows 

v = grad :qb,: ( 9 )  

for which Eq. (7) is satisfied identically, while Eq. (9) also leads to a linear Poisson 
equation 

t. d~ 1 Ar 
% at (i0) 

and Eq. (8) becomes 

A~= dt k~i dt 7" (ii) 

Thus for the flows studied integration of the Navier-Stokes equations reduces to solu- 
tion of the classical linear equations (I0), (ii). 

Clarification of the conditions required for realization of flows with homogeneous spa- 
tial density for various models of continuous media is of special interest. The method for 
determining the characteristics of all media admitting flows with homogeneous density con- 
sists of the following. 

i. Assuming that the gas density is homogeneous [p = pl(t)] general explicit solutions 
of the equations of motion and continuity are constructed, depending parametrically on the 
specific volume function qi(t) [in the multidimensional case the solutions of the correspond- 
ing problems for Eqs. (i0), (ii)]. 

2. For arbitrary energy balance equations in the medium the explicit solutions permit 
establishing the general functional form of the characteristics of all media [equations of 
state e(p, q), T(p, q), thermal conductivity coefficients • N), thermal flux relaxation 
T(p, q), sources Q(p, q), etc.] admitting flows with homogeneous density. 

3. For the medium found in this manner the energy equation reduces to an ordinary dif- 
ferential equation which defines the time behavior of the fanction ql(t), and consequently, 
the complete form of the solutions obtained. We will present the major results. For adi- 
abatic flows of ideal media the equations of state 

~@~ ~) = p~:(~) + ~(~) (12) 

[where g:(:) and ~2(q) are arbitrary functions] are admissible. In particular, for si(q)= 

q/(7 - i), g2(q) ~ 0, Eq. (12) describes an ideal perfect gas, and for ~i(q) = q/(7 - i), 
e2(n) = aq/(q - b) 2, a Van der Waals gas. The function qi(t) is defined by the quadrature 

t C. (e 4 = -f I (13) 

For a perfect thermally conductive gas [p = pRT, e = Pq/(7 - I)] the thermal conductivity 
coefficient 

~(N, T) = T• (14) 

[where • is an arbitrary function]. The specific volume qi(t) is found from a nonlinear 
autonomous third-order equation 
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form 

~ (( #)~]-~( -~--~-~/ ~ V , ~ ,  
"1( ' I l I ) :  ,N+ '1"~--1 n l '  'rl TI ~ i~ll ~ )  ) �9 (15) 

In the general case (thermally conductive gas with sources) for characteristics of the 

e(p, 0) = Pe~(O), r (p ,  0) = pT~(~l), 

• 0) ---- Px~(O),: Q(p, 0) = pQl(~l), 
(16) 

where el(0) , TI(0) , • QI(0) are arbitrary functions, and we obtain ql(t) from the equation 

0181 (01) : - -  (0~)2/2 - -  {(~1) 1]I T1 (01) 3xl  (01) - -  ~101Q1 (01)} dt .  ( 17 ) 

We w i l l  n o t e  t h a t  c o n s i d e r a t i o n  o f  t h e  t h e r m a l  f l u x  r e l a x a t i o n  e f f e c t  ( w i t h i n  t h e  f r a m e -  
work o f  h y p e r b o l i c  h e a t  t r a n s p o r t )  i s  p o s s i b l e  f o r  c o e f f i c i e n t s  ~ (p ,~)=  ~1(~), x(P,O)= Pul(~)[  (T1(0), 
• a r e  a r b i t r a r y  f u n c t i o n s ] .  

S o l u t i o n s  can  a l s o  be c o n s t r u c t e d  f o r  m e d i a w i t h  c h a r a c t e r i s t i c s  more g e n e r a l  t h a n  t h o s e  
o f  Eq. (16)  ( f o r  a r b i t r a r y  f u n c t i o n s  e(p, 0)~ u(p~ 0), T(p ,  ~1), [ 1 4 ] ) .  E q u a t i o n s  ( 1 3 ) ,  ( 1 5 ) ,  
(17)  h a v e  p a r t i c u l a r  s o l u t i o n s  o f  a power  f o r m  

~h(t) = Oo(tj - -  0% ( l S )  

which for 0 < ~ < i describe regimes with aggravation [for adiabatic flows of an ideal gas 
= 2 / ( ~  + 1)]. 

We will now consider the concrete formulation of boundary problems for Eqs. (i0), (ii). 
We will seek solutions in which the pressure and velocity of the material vanish simultaneous 
on some closed boundary 892 (in view of the condition IvI I0e ~-0 the boundary 8~2 is immobile). 

The problem consists of defining velocity and pressure fields in the region external to 3g= 
and finding the pressure and velocity distributions on the fixed boundary 8~z(t), correspond- 
ing, for example, to an external piston compressing the gas. 

The boundary problems formulated for Eqs. (i0), (ii) can be written in the form 

d (..~_~ dTII~ ~ d~ 1 "O(I) = 0  ( 1 9 )  
A ~ =  dt \ ~  d r / '  ~glOa~=0, AO nl  a t '  ~ 0 a ~  

(where  n~ i s  t h e  n o r m a l  t o  B~u) .  A s o l u t i o n  o f  t h e  c l a s s i c a l  p r o b l e m s  o f  Eq. (19)  e x i s t s  
and  i s  u n i q u e .  The p r e s s u r e  d i s t r i b u t i o n  on t h e  p i s t o n  s u r f a c e  i s  f o u n d  f rom 

p(r, t) = {~F - -  U(r, t) - -  (grad (:I:))2/2}01(t). (20)  

In view of the time-independence of the boundary conditions the solutions of Eq. (19) 
are constructed by separating the variables r and o~(t): 

d (_.!..l d~]l"~ -1  I dl], 
IF = __ ~21 . . ~  ~l]l dt J ~if2 (r), (I) = ~1 ~l 1 -  dt (I) 2 (r); ( 2 1 )  

aq)~ I Am 2 (r) = ~,1, an--~-loa, = 0, AT~ (r) = ;~2, ~ (r)l~a 2 = 0. (22)  

In the case of a power function for ql, gq. (18), the pressure and velocity are calculated with 
with the expressions 

v = a~-~ 1 (t I - - 0  -1  g r a d ( ~  (r), 01 (t) =- 00 (tl - -  t) =, (23)  

--1(~--1 
P = ~lo 2 (ty - -  t) -c~-2 {~'2 (r) (grad (I)~ (r))~/2}. 

The solutions of Eq. (23) are an example of localization of multidimensional gas dynamic 
processes for compression of a medium in a regime with aggravation. The velocity, density, 
and pressure of the gas increase without limit upon approach to the final time tf for ~ > 0. 
In view of the boundary conditions of Eq. (19) the gas dynamic motion is localized in a re- 
gion between the piston B~z(t) and the front B~2 (for more detailed information on the local- 
ization effect in gas dynamics see [5-12]). 

Further analysis involves distinguishing radially symmetric solutions of system (22), 
dependent solely on r = I r l :  
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%1 r2 C 

(D: (r) = rZ 
2 + C8 In r + C4, N = t ,  

i ~ r2 C5 r:-N+C6, N # I ~  
N + I  2 t - - N  

[N--+ i + C ~ l n r - ~  Cs' N = t .  2 

I f  t h e  b o u n d a r y  ~ :  i s  a s p h e r e  w i t h  r a d i u s  r 0 ,  t h e n  Eq.  ( 2 4 )  ( f o r  c o r r e s p o n d i n g  c h o i c e  o f  
t h e  c o n s t a n t  C i )  g i v e s  a c o m p l e t e  s o l u t i o n  o f  Eq.  ( 1 9 ) :  

v (r, t) -- = I N q- i t I --  t r (1 - -  (ro/r)-5%l), 

(24) 

(25) 

p (r, t) = ~: (t I - -  t) -~-= N~-  i 2 ~ I - -  " N--+ : [ln (r/ro) , N = t. 

The presence of the comparison theorem for the linear problems of Eq. (22) and the precise 
solutions of Eqs. (24), (25) permits construction of a wide class of estimates for Eq. (19). 

We will note that aside from the solution of the problem of a piston [15] Eq. (25) and 
in the more general case the solution of Eq. (19) describe the process of limitless concen- 
tration of matter and energy in a closed (finite) region of space. In fact, let R 0 > r0, 
the radius of the immobile boundary 8g:, on which the velocity is specified, 

a I tR~ I-- -+cr t---~t]. IV(Ro, t) l =  N +  t t  1 -  

Then in the space between R0(~:) and r0(~2) over a finite time tf the density, pressure, and 
velocity of the material increase without limit (in the regime with aggravation). It follows 
from Eq. (25) that the velocity of the closed boundary attached to fixed particles of the 
material (the piston)changes by a law 

~ - - I  N+: vp (t) N 7 i (tl -- t) C: (r  o ~- C: (t] -- t)=) -N/(N+:) ( 2 7 )  

(C I > 0 is a constant defined by the mass of the compressed gas or initial position of the 
piston). 

At the beginning of the compression process the piston velocity and, as can be simply 
shown, the pressure change by a law corresponding to one-dimensional solutions in separable 
mass and time variables (i) ([i-i0], N = O, i, 2). For rp(t) + r 0 [where rp(t) is the piston 
coordinate] the pressure on the piston tends to the law for planosymmetric flows (i) (N = 0), 
which have the property of localization [5, 6, 9, i0]. 

In conclusion, we will note that for flows with homogeneous density [in view of the 
equality div v ~ (In ~:)' =/:(t))] consideration of the contribution of viscous forces to the 
energy balance equation in the medium simplified considerably. The results of the present 
study indicate that in viscous compressible media, flows with homogeneous density are described 
by classical linear elliptic equations and that the localization and shock-free supercom- 
pression effects are realized. 

The authors are indebted to S. P. Kurdyumov and N. V. Zmitrenko for their valuable ad- 
vice. 
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EXPERIMENTAL STUDY OF SUPERSONIC THREE-DIMENSIONAL JETS 

G. M. Zhinzhikov and N. O. Pavlova UDC 533.17 

The interest in the study of three-dimensional jets, i.e., jets in which the three- 
dimensional character of flow is due to the form of the outlet section of the nozzle [i], 
stems from their increasing practical value. For example, such nozzles are used in modern 
supersonic aircraft [2], in the gas-processing industry [3], and in other applications. 

There have been relatively few experimental studies of the propagation of three-dimen- 
sional jets; of the studies that have been conducted, we can note [4-6], with the latter being 

the most complete. 

Here, we experimentally study the shock-wave structure and parameter distribution in 
supersonic underexpanded jets of cold air (T o ~ 290 K) discharged into the atmosphere (p~ ~ 
0.i MPa) from rectangular sonic nozzles. We used schlieren visualization of the flow and we 
measured the total head on the jet axis. Empirical relations were obtained to determine 
the position of the central discontinuity in three-dimensional jets and the Mach-number dis- 
tribution on the axis. The results are compared with the data in [6]. 

In our experiments, we used sonic nozzles with a rectangular edge and a ratio of sides 
of the rectangle ~ equal to i, 2, 3, 5, and i0. This ratio is referred to below as the elon- 
gation of the nozzle edge. The size of the lesser side was 6-12 mm. The nozzle took the 
form of a rectangular opening in the end of a cylinder with an inside diameter of 80 mm. 
The nozzle had shaped subsonic and equalizing plane-parallel sections about 4 mm long. The 
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